Heat Shock Protein HSP101 Affects the Release of Ribosomal Protein mRNAs for Recovery after Heat Shock.

نویسندگان

  • Rémy Merret
  • Marie-Christine Carpentier
  • Jean-Jacques Favory
  • Claire Picart
  • Julie Descombin
  • Cécile Bousquet-Antonelli
  • Pascal Tillard
  • Laurence Lejay
  • Jean-Marc Deragon
  • Yee-Yung Charng
چکیده

Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat shock protein HSP101 binds to the Fed-1 internal light regulator y element and mediates its high translational activity.

The internal light-regulatory element (iLRE) of ferredoxin (Fed-1) mRNA, comprising the 5' leader and at least the first 13 codons of the open reading frame, controls transcript abundance after illumination of the plant in a translation-dependent manner. We have characterized the RNA binding activities associated with the Fed-1 iLRE and have identified one activity as the heat shock protein HSP...

متن کامل

Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs.

Shifting the temperature of a yeast culture from 23 degrees to 36 degrees C results in a sudden and severe (greater than 85%) decline in the cellular levels of ribosomal protein (rp-)mRNAs. Recovery during continued growth at 36 degrees C occurs within 1 h. The use of hybrid genes carrying different portions of the region upstream of the gene coding for ribosomal protein L25 revealed that this ...

متن کامل

HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status.

The 5' leader (Omega) of tobacco mosaic viral RNA functions as a translational enhancer. Sequence analysis of a 102-kD protein, identified previously as a specific Omega RNA-binding protein, revealed homology to the HSP101/HSP104/ClpB family of heat shock proteins and its expression in yeast complemented a thermotolerance defect caused by a deletion of the HSP104 gene. Up to a 50-fold increase ...

متن کامل

Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis.

Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the "memory" of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32-kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance b...

متن کامل

Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis1[W][OA]

Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the “memory” of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 174 2  شماره 

صفحات  -

تاریخ انتشار 2017